
External Use

TM

Go Multicore Series:

F T F 2 0 1 4 : F T F - S D S - F 0 0 9 8

Joe Hummel, PhD | http://www.joehummel.net/freescale.html

Understanding Memory in a Multicore World,

Part 1:

Does Your Thread See What I See?

TM

External Use | 1

Agenda

• Why multicore?

• Motivation by example: matrix multiplication

• Shared memory and caching

• High Performance Computing = 2

TM

External Use | 2

Introductions

• Your speaker&

• Joe Hummel, PhD

− PhD: UC-Irvine, in High Performance Computing

− Professor: U. of Illinois, Chicago

− Trainer: Pluralsight, LLC

−Consultant: Joe Hummel, Inc.

−Microsoft MVP C++

−Married, one daughter adopted from China (just turned 12!)

− Avid sailor

TM

External Use | 3

Multicore

How did we get here?

TM

External Use | 4

Moore's law

• Moore's law continues to serve us well ― e.g. transistor counts&

What to do with all these

transistors?

TM

External Use | 5

Solution

• Multicore!

− copy-paste processors :-)

TM

External Use | 6

Representative multicore examples&

QorIQ P2040/2041

• Power architecture, quad-core

i.MX 6Q

• ARM architecture, quad-core

TM

External Use | 7

Theoretical performance

8 x 2GHz cores have the computing

equivalent of 1 x 16GHz core, without

the heat and exponential power

requirement

TM

External Use | 8

Taking advantage of multicore

1. AMP

2. SMP

3. Multithreading

4. Multiprogramming

mostly about configuration…

mostly about programming…

TM

External Use | 9

Multithreading

• Multithreading == multiple threads working together

− To handle more work (throughput) or complete faster (performance)

−OS automatically maps threads across available cores

• Disadvantages?

− Increased application complexity

−Dangers of shared memory programming model

� race conditions, one thread crash will crash them all, 2

shift_bits

STMFD sp!, {r4-r11, lr}
RSB kr, k, #32

MOV y_0, #0

loop

LDMIA in!, {x_0-x_7}

ORR y_0, y_0, x_0, LSL k

MOV y_1, x_0, LSR kr
ORR y_1, y_1, x_1, LSL k

MOV y_2, x_1, LSR kr

ORR y_2, y_2, x_2, LSL k

MOV y_3, x_2, LSR kr

ORR y_3, y_3, x_3, LSL k
MOV y_4, x_3, LSR kr

ORR y_4, y_4, x_4, LSL k

MOV y_5, x_4, LSR kr

ORR y_5, y_5, x_5, LSL k

MOV y_6, x_5, LSR kr
ORR y_6, y_6, x_6, LSL k

MOV y_7, x_6, LSR kr

ORR y_7, y_7, x_7, LSL k

STMIA out!, {y_0-y_7}

MOV y_0, x_7, LSR kr
SUBS N, N, #256

BNE loop

MOV r0, y_0

LDMFD sp!, {r4-r11, pc}

shift_bits

STMFD sp!, {r4-r11, lr}
RSB kr, k, #32

MOV y_0, #0

loop

LDMIA in!, {x_0-x_7}

ORR y_0, y_0, x_0, LSL k

MOV y_1, x_0, LSR kr
ORR y_1, y_1, x_1, LSL k

MOV y_2, x_1, LSR kr

ORR y_2, y_2, x_2, LSL k

MOV y_3, x_2, LSR kr

ORR y_3, y_3, x_3, LSL k
MOV y_4, x_3, LSR kr

ORR y_4, y_4, x_4, LSL k

MOV y_5, x_4, LSR kr

ORR y_5, y_5, x_5, LSL k

MOV y_6, x_5, LSR kr
ORR y_6, y_6, x_6, LSL k

MOV y_7, x_6, LSR kr

ORR y_7, y_7, x_7, LSL k

STMIA out!, {y_0-y_7}

MOV y_0, x_7, LSR kr
SUBS N, N, #256

BNE loop

MOV r0, y_0

LDMFD sp!, {r4-r11, pc}

shift_bits

STMFD sp!, {r4-r11, lr}
RSB kr, k, #32

MOV y_0, #0

loop

LDMIA in!, {x_0-x_7}

ORR y_0, y_0, x_0, LSL k

MOV y_1, x_0, LSR kr
ORR y_1, y_1, x_1, LSL k

MOV y_2, x_1, LSR kr

ORR y_2, y_2, x_2, LSL k

MOV y_3, x_2, LSR kr

ORR y_3, y_3, x_3, LSL k
MOV y_4, x_3, LSR kr

ORR y_4, y_4, x_4, LSL k

MOV y_5, x_4, LSR kr

ORR y_5, y_5, x_5, LSL k

MOV y_6, x_5, LSR kr
ORR y_6, y_6, x_6, LSL k

MOV y_7, x_6, LSR kr

ORR y_7, y_7, x_7, LSL k

STMIA out!, {y_0-y_7}

MOV y_0, x_7, LSR kr
SUBS N, N, #256

BNE loop

MOV r0, y_0

LDMFD sp!, {r4-r11, pc}

Thread 0 Thread 1 Thread 2

x y z

TM

External Use | 10

Example

Matrix multiplication&

TM

External Use | 11

Motivation by example

• Matrix Multiplication

TM

External Use | 12

Sequential to parallel&

//

// Naïve, triply-nested sequential solution:

//

for (int i = 0; i < N; i++)

{

for (int j = 0; j < N; j++)

{

C[i][j] = 0.0;

for (int k = 0; k < N; k++)

C[i][j] += (A[i][k] * B[k][j]);

}

}

fork

join

Sequential

Sequential

Parallel

Common pattern for parallelism:

Structured (or “Fork-Join”)

Parallelism

TM

External Use | 13

Multithreading using OpenMP

• OpenMP == Open Multiprocessing standard

− Provide directive, and compiler multithreads for you…

//

// Naïve parallel solution using OpenMP: result is structured parallelism, with

// static division of workload by row.

//

#pragma omp parallel for // parallelize outer loop ==> by rows:

for (int i = 0; i < N; i++)

{

for (int j = 0; j < N; j++)

{

C[i][j] = 0.0;

for (int k = 0; k < N; k++)

C[i][j] += (A[i][k] * B[k][j]);

}

}

x

y

z

TM

External Use | 14

Results?

• Very good!

−matrix multiplication is "embarrassingly parallel"

− linear speedup — 2x on 2 cores, 4x on 4 cores, …

1

2

4

8

16

32

1 2 4 8 16 32

S
p

e
e

d
u

p
:

se
q

/p
a

r

Number of Execution Units

Linear Speedup

Version Cores Time (secs) Speedup

Sequential 1 30

OpenMP 4 7.6 3.9

TM

External Use | 15

But wait&

• What's the other half of the chip?

− cache!

• Are we using it effectively?

−we are not…

Memory cache…

TM

External Use | 16

Cache-friendly matrix multiplication

• No one solves MM using the naïve algorithm

− horrible cache behavior

X

TM

External Use | 17

Step 1: loop interchange

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)

C[i][j] = 0.0;

#pragma omp parallel for

for (int i = 0; i < N; i++)

for (int k = 0; k < N; k++)

for (int j = 0; j < N; j++)

C[i][j] += (A[i][k] * B[k][j]);

Another factor

of 2-10x

improvement!

TM

External Use | 18

Step 2: blocking

• Block size based on size of cache closest to core — level 1 ("L1")

− largest integer BS such that

��	∗	��	∗	�	∗	���	
��

���	�

����		���	
< 1

#pragma omp parallel for

for (int jj=0; jj<N; jj+=BS) // for each column block:

{

int jjEND = Min(jj+BS, N);

// initialize:

for (int i=0; i<N; i++)

for (int j=jj; j < jjEND; j++)

C[i][j] = 0.0;

// block multiply:

for (int kk=0; kk<N; kk+=BS) // for each row block:

{

int kkEND = Min(kk+BS, N);

for (int i=0; i<N; i++)

for (int k=kk; k < kkEND; k++)

for (int j=jj; j < jjEND; j++)

C[i][j] += (A[i][k] * B[k][j]);

}

}

TM

External Use | 19

Results?

• Caching impacts all programs, sequential and parallel&

Version Cores Time (secs) Speedup

Sequential

Naive 1 30

Blocked 1 3 10

OpenMP

Naïve 4 7.6 3.9

Blocked 4 0.8 37.5

TM

External Use | 20

High-Performance Computing

• HPC

• Parallelism alone is not enough&

HPC == Parallelism + Memory Hierarchy ─ Contention

Expose parallelism

Maximize data locality:

• network

• disk

• RAM

• cache

• core

Minimize interaction:

• false sharing

• locking

• synchronization

TM

External Use | 21

Caching in a multicore world

Let's talk about caching&
cachecache cachecache

cachecache cachecache

RAM

cachecache

ca
ch
e

ca
ch
e

TM

External Use | 22

The memory bottleneck

• Memory latency is *the* biggest performance problem for HW designers

− latency on the order of 100's to 1,000's of CPU cycles

CPU

RAM

Program

GHz

MHz

TM

External Use | 23

How about multicore?

• In a multicore world, the memory bottleneck is even worse

−more mouths to feed :-)

RAM

Program

TM

External Use | 24

The most common solution?

• Caching!
− keeping copy of RAM closer to the cores…

RAM

Program

TM

External Use | 25

Modern caching

• Multi-level:

RAM

Unified cache (Instr and Data)

CPU

Unified cache (Instr and Data)

core 0

DI

core 1

DI

core 2

DI

core 3

DI

CPU

Unified cache (Instr and Data)

core 0

DI

core 1

DI

core 2

DI

core 3

DI

"socket" "socket"

Level 1

Level 2

Level 3

TM

External Use | 26

Typical sizes?

Typical access times?

Design question #1

• Cache speed vs. size

− the closer to the core, the faster we need the cache to be

− the faster the cache, the harder it is to build

∴ The faster the cache, the smaller it is.

Typical sizes and access

times (in CPU cycles):

L1: 32KB, 1 cycle

L2: 512KB, 10 cycles

L3: 4MB, 100 cycles

RAM: GBs, 1,000 cycles

TM

External Use | 27

Design question #2

• What happens as different

cores read memory?

Thread 3

read x;

.

.

What do you think?

x yThread 1

read x;

.

.

Thread 2

read x;

.

.

z

TM

External Use | 28

Reads&

• Each core caches a copy

• Read policies:

− inclusive => copy @ all levels

− exclusive => copy @ most one level

− inclusive is simpler / faster, exclusive holds more data overall

Assuming inclusive, x

is cached at L3, both

L2's, and 3 L1's…

xx

cache entry ("line")

typically

64

bytes

TM

External Use | 29

Design question #3

• What happens as cores

write memory?

Thread 3

read x;

.

.

x = …;

x yThread 1

read x;

.

.

Thread 2

read x;

.

.

z

What happens now?

assume x is cached

here…

TM

External Use | 30

Writes&

• Cache coherence!

• On a write, HW ensures that all cores

will eventually see new value

• How?

− by invalidating matching cache entries,

sending core back to RAM on next read

Cache

coherence

HW

invalidates

copies of

x…

x is updated on

path back to

RAM…

TM

External Use | 31

Cache coherence&

• & is not cheap!

− complex interconnections

−must be fast

Cache Coherence Hardware

TM

External Use | 32

When does write happen?

• Often configurable

• Write policies:

−write-through => write to RAM immediately

−write-back => buffer and write later

−Write-through is simpler / updates RAM sooner, write-back yields higher memory bandwidth

TM

External Use | 33

Example: QorIQ P2040/2041

• Multi-level caching: L1, L2, L3

−Configurable write-back or write-through

• Corenet switch fabric:

− Fully interconnected (crossbar), cache coherent

− Scalable...

TM

External Use | 34

Example: i.MX 6Q

• Multi-level caching: L1, L2

• Fully cache coherent

TM

External Use | 35

Summary

TM

External Use | 36

Summary

• Multicore is the path forward for better performance

• But good performance is not easy:

• Thank you for attending!

− Email: joe@joehummel.net

−Materials: http://www.joehummel.net/freescale.html

HPC == Parallelism + Memory Hierarchy ─ Contention

TM

© 2014 Freescale Semiconductor, Inc. | External Use

www.Freescale.com

